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ON THE COLLAPSE OF INELASTIC TUBES UNDER
COMBINED BENDING AND PRESSURE

Department of Aerospace Engineering and Engineering Mechanics, University of Texas

Abstract—The response and stability of long. relatively thick-walled metal tubes under combined
bending and external pressure were studied through combined experimental and numerical efforts.
The experiments involved stainless steel 304 tubes with nominal diameter to thickness ratios of 34.7
and 24.5. Curvature~-pressure interaction collapse envelopes were generated for two different loading
paths involving bending followed by pressure and pressure followed by bending. The tube response,
the critical collapse loads and the nature of the instabilitics observed were found to depend on the
leading path. A suitable formulation of the problem based on the principle of virtual work was
used to numerically simulate the experiments, The J; flow rule of plasticity was used to model the
inclastic material behavior. The analysis successfully reproduced the limit load type of instabilities

which govern the problem in the range of diameter to thickness ratios of interest.
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NOMENCLATURE

tube eutside diameter

tube mean digmeter, (D + Do = 20/2
change in diameter in plane of bending
Young's modulus

sccond invariant of deviatoric stress tensor
bending moment

EN ]

Ramberg Osgood hardening parameter
pressure

collapse pressure

yield pressure

propiagation pressure

tube mean radius

anisolropy parameters

tube thickness

displacements

initial imperfection

coordinates

back stress (ensor components
imperfection amplitude, (D, — Do) (D s + D)
striin tensor components

strain components

strain components at “mid-surfaces”
distance from tube center plune to points in the tube cross section
coordinate

tube curvature

[T H

local circumferential curvature

Poisson’s ratio

stress components

cyuivalent stress

Ramberg Osgood yield parameter

yicld stress in axial direction

yicld stress in circumferential and radial directions,

INTRODUCTION

The work presented in this paper is motivated by the design needs of structures such as
pipelines and risers in decp offshore waters. The high ambient pressure makes such structures
collapse critical. They are particularly vulnerable during the installation process when, in
addition to the external pressure, they must sustain bending and/or tension loads{1]. An
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example of a pipeline installation process is shown in Fig. 1(a). The line is payed into the
sea off a special lay vessel. The configuration of the suspended section induces bending
which is usually highest in the “sagbend™ region close to the seafloor. The bending curvature
induced is controlled by the tension applied at the barge. Thus, sufficient tension must be
applied to avoid collapse of the line.

Another collapse sensitive installation procedure is the one in which a pipeline on the
seafloor is pulled through a “J"-tube of fixed radius (Fig. 1(a)). The design of the J-tube
must. by necessity. be strongly influenced by the pipe collapse limitations. The pressure-
curvature loading history induced to a safely designed pipeline by the two processes
described is shown schematically in Fig. 1({b). The collapse envelope of the pipe is included
for reference. The paper addresses the problem of establishing such collapse envelopes
for pipe geometric and material parameters suitable for deep waters (1500-8000 ft; 450-
2450 m).

Brazier[2] pointed out that the response of long elastic tubes in pure bending is
characterized by a limit load type of instability (see also Ref. [3]). The limit moment is
directly related to the ovalization experienced by the tube cross section. Bifurcation type
of instability characterized by axial and circumferential waves was shown to often precede
the limit load[4-7]. In the presence of external pressure, the tube non-linear response
becomes softer. This leads to lower limit moments and bifurcation loads[7. 8].

In the case of thicker shells (10 < D/t < 200) both the response as well as the inherent
instabilities of the structure are strongly influenced by the interaction of the induced
ovithzation and the plastic characteristics of the material. Ades(9]. obtained the limit
moment of clastoplastic tubes by assuming the ovalized cross section to be elliptical and
by modcling inclastic behavior through the J,; deformation theory of plasticity. Gellin[10],
developed o more systematic solution procedure for establishing the non-lincar tube
response by adopting circumfcrentially inextensional kinematics and the J, deformation
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Fig. 2. (a) Moment-curvature response for inelastic tubes. (b) Pressure—deflection responses for
inelastic tubes.

theory of plasticity. Gellin’s solution procedure was extended in Ref. {11] by adopting a set
of extensional kinematics and a variety of incremental plasticity models. Other noteworthy
contributions to the problem are those of Bushnell[12] and Calladine[13]. Experiments
involving pure bending of inelastic shells have been reported in Refs [14-20]. From these
studies it can be concluded that for ““thinner™ tubes bifurcation type of instability precedes
the limit load ; for “thicker™ tubes the limit load is reached first as shown in Fig. 2(a). For
commonly used steel and aluminum alloys the transition seems to be between D/t values
of 35-45.

Long, relatively thick-walled tubes under external pressure experience a limit pressure
type of instability. Unlike the limit moment in the pure bending loading problem, the limit
pressure is very sensitive to initial geometric imperfections, particularly initial ovality (Fig.
2(b)). Detailed parametric studies of the collapse pressure (and literature review) can be
found in Refs [21, 22].

References [23, 24] reported experiments involving collapse of tubes under combined
bending and external pressure. The results of Ref. [23] were for steel pipes having D/t values
of 40, 60 and 80; those of Ref. [24] for aluminum tubes with D/r values of 35 and 50. A
shell bifurcation type of analysis of the problem was developed in Ref. [23], and an analysis
for predicting the limit load type of instability of the problem was presented in Ref. [25].
Both analyses adopted the J, deformation theory of plasticity to model the inclastic material
behavior. Fabian[26] developed a more complete analysis of the problem involving both
biturcation and limit load instabilities and the more appropriate J, incremental plasticity
modcl.

The objective of this study is to extend the experimental data, as well as the analytical
tools available for establishing the collapse of tubes under combined bending und external
pressure, to low D/t values. The D/t range of 35-15 was chosen as the one most relevant to
deep offshore applications. For common steel alloy tubes in this D/t runge, collapse is
governed primarily by limit load type instabilities for both external pressure as well as pure
bending loads. In addition, extensive plastic deformations can precede collupse. As a result
the critical combinations of pressure and bending arc expected to be dependent on the
loading path followed to collapse[27].

A combinced bending and pressure facility capable of testing steel tubes in the range of
interest was developed. Collapse experiments for two values of D/t and three loading paths
are presented. A suitable problem formulation is also presented followed by a comparison
between experimental and predicted results and a limited parametric study.

EXPERIMENTS

Test facilities

The combined bending-pressure experiments were carried out in a specially designed
test facility shown in Fig. 3(a). It consists of a pure bending device which can operate inside
a pressure vessel. A data acquisition system is used to monitor the experiments.
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The bending device is shown schematically in Fig. 4(a). It was designed as a four point
bending machine capable of applying bending and reverse bending (design similar to
facilities in Ref’s [20, 24]). [t consists of two heavy sprocket assemblies resting on two beams.
Heavy chains run around the sprockets and are connected to two hydraulic cylinders and
load cells forming a closed loop. Each tube tested is fitted with solid rod extensions as
shown in Fig. 4(b). The rods are chamfered at the ends to reduce stress concentrations and
to avoid premature buckling at the end of the test specimen. The rod-tube interface is
sealed with a rubber hose. The test specimen assembly is engaged by the bending device
through four rollers located on each sprocket. as shown in Fig. 4(b).

Bending is achieved by contracting either of the cylinders causing rotation of the
sprockets. The load transfer to the test specimen is in the form of a couple formed by
concentrated loads from two of the rollers. During bending the rolling contact between the
test specimen and the device guarantees freedom of movement of the tube in the axial
direction.

The hydraulic system was designed such that the idle cylinder extends an amount equal
to the contraction of the active one. This ensures that the periphery of the closed loop
consisting of the chains, load cells and cylinders has constant length. Bending in the reverse
sense is achieved by reversing the direction of flow in the hydraulic circuit. The hydraulic
system is such that the device operates essentially as a curvature controlled testing machine.

The curvature of the test specimen is directly proportional to the sum of the angles of
rotation of the sprockets. A rotary variable differential transformer (RVDT) is used to
monitor the rotation of each sprocket. The curvature range of the set-up is governed by the
diameter of the pressure vessel and the length of the test specimen,

The applicd bending moment is directly proportional to the tension in the chain which
is monitored by the two load cells in the chain loop. The electrical circuits of the load cells
were designed so that the measured load is insensitive to pressure and temperature changes,
and negates the effect of the weight of the chain loop. The capacity of the bending device
is 15,000 Ib in. (1700 N m). Tubes having maximum length of 40 in. (1.0 m) and diamcters
up to 1.5 in. (38 mm) can be tested.

The device was designed o be stifl relative to the test specimen. For the experiments
reported, the energy stored in the device was less than 3% of the energy stored in the test
specimen.

A special lightweight instrument mounted at a point close to the tube midspan was
used to monitor changes in the major and minor diameters of the tube cross section.

The pressure vessel is cylindrical in shape, 72 in. (1.8 m) long and has an internal
diameter of 20 in. (0.51 m). A special closure system provides full opening access at onc
end of the vessel (Fig. 3(a)). The vessel has a working pressure of 5000 psi (350 bar). The
bending device rolls into the pressure vessel and is operated remotely. The operational set-
up of the test facility is shown schematically in Fig. 3(b). The pressure vessel is usually
completely filled with water and pressurized in a nearly volume controlled fashion using a
hydraulic pump. Pressure gages and an clectrical pressure transducer are used to monitor
the pressure during the experiment. All transducers, signal cables and hydraulic lines
operating in the wet and high pressure environment of the pressure vessel had to be specially
designed, insulated and sealed.

A computer operated data acquisition system was used to monitor the experiment.
The applicd moment (M), curvature (x), ovalization (AD/D) and pressure (P) were
customarily monitored. The signals from the corresponding transducers were suitably
amplified and digitized through an A/D converter at the rate of about 5 sample sets per
second. A microcomputer was used to select, manipulate, display and store the data in sets
of {AM .k, AD/D, P}. Approximately 1500 data sets were recorded for each typical bending-
pressure collapse experiment. The recorded data had uncertainties of 3% for the moment,
5% for the curvature, 0.5% for the ovalization and 0.5% for the pressure.

Experimental procedure
The experiments were carried out using seamless. drawn, stainless steel tubes having
nominal diameters of 1.25 in. (31.8 mm). Results for nominal D/t values of 34.7 and 24.5
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Fig. 3. (a) Combined pressure bending test facility. (b) Test fucility in operation (schematic).
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Fig.9. (a) Measured moment-curvature responses for different values of pressure. (b) Test specimens
collapsed at different pressures (and curvatures).
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Fig. 4. (2) Schematic of pure bending device. (b) Load transfer assembly.

are presented. The lengths of the test specimens ranged between 18 and 24 tube diameters.
The material propertics of the tubes tested were obtained from uniaxial tension tests
performed on axial test coupons cut from sections adjacent to the test specimens. Previous
experience with this type of tubes[21] indicated that the manufacturing process could induce
inclastic anisotropy to the tubes. The main characteristic of the anisotropy was that the
yield stress in the circumferential direction was different from that in the axial direction.
Biaxial experiments involving combined internal pressure and axial loading were carried
out on sections of tubes in order to establish the degree of anisotropy (see Ref. [28] for
details).

The mean initial geometric imperfections of each test specimen were established by
micrometer measurements prior to cach test. These included initial ovality and thickness
variation measurements. The mean values of the material and geometric parameters of the
two families of tubes tested are listed in Table 1.

The combined bending-pressure test facility used in the experiments allows inde-

Table 1. Geometric and material parameters of tubes tested

Dyt D, in. L, in. E, ksi g, ksi 0, ksi
(Nominal) (mm) (mm) Ao (GPa) (MPa) (MPa) n N
347 1.2480  0.0357 04x10-? 26.9 x 10° 32.5 37.6 9.67 0.94
(31.70)  (0.907) (186) (224) (259)
24.5 1.2475 0.0485 1.0x10-3 29.2x10° 49.6 518 17 0.80

(31.69) (1.232) (201) (342) (357)
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pendent control of the applied curvature and external pressure. Three loading paths were
adopted in the experiments; they are shown schematically in Fig. 5. In the first loading
path (Fig. 5(a)). the tube was first bent to a chosen value of curvature at zero pressure. The
curvature was then fixed and pressure loading was applied until the tube collapsed (depicted
as K — P loading path). In the second (Fig. 5(b)), pressure was applied first followed by
bending under constant pressure until collapse (depicted by P — x loading path). In the
third, the curvature and pressure were incremented alternately by small steps forming a
nearly radial path as shown in Fig. 5(c) (depicted as “radial” loading path). This was
continued until the tube collapsed.

For the first two loading paths enough experiments were carried out to establish the
configuration of the collapse envelopes for the full range of pressure and curvature values
of interest. In the case of the “‘radial™ path a selected number of experiments were carried
out in order to establish the trend of the results.

Definition of collapse

The geometric and material parameters of the two families of tubes tested (Table 1)
were such that in a pure pressure test the bifurcation pressure of the tubes with Dy/t = 34.7
occurred in the elastic range; that of the tubes with Dy/t = 24.5 occurred in the plastic
range. However, the presence of initial geometric imperfections combined with inelastic
effects led to limit load instabilities which were in general lower than the bifurcation
pressures. The tubes collapsed catastrophically on attainment of the limit pressures.

The pure bending moment—curvature responses of both families of tubes tested were
characterized by limit moments (Fig. 6(a)). Bending was carried out under curvature
controlled conditions and, as a result, the tubes could be bent beyond their limit moments.
However, soon after the limit moment was achieved the ovalization of the cross section
ceased to be uniform along the length of the tube. Deformation was localized in a region
5-6 diameters long as shown in Fig. 6(b); this was accompanied by a sharp decline in
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Fig. 5. Loading paths considered.
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moment bearing capacity. The limit moment will be taken as one of the critical collapse
criteria.

The collapse mechanism under combined bending and pressure was found to depend
on the loading history. The variation of the tube moment, curvature, ovalization and
pressure during the two parts of the x = P and P.— « loading paths are shown schematically
in Fig. 7. In a typical k — P experiment the tube was first bent to a curvature x, with
corresponding moment M, and ovalization AD, (Figs 7(a) (i) and (ii)). The curvature was
fixed at the value x, and the pressure gradually increased. This led to an increase in
ovalization and a drop in moment (Figs 7(a) (iii) and (iv)). This continued until the
ovalization grew to a value at which the applied pressure could no longer be supported and
the tube collapsed. This is identified by the limit pressure (collapse pressure, P,.,) in Fig.
7(a) (iii). Measured moment, curvature and pressure values for such a path are shown in
Figs 8(a) and (b). Figure 8(c) shows a test specimen after collapse.

In atypical £ — x loading history (Fig. 7(b)) pressure P, was applied first. This induced
a small change in the geometry of the cross section indicated by AD,. The tube curvature
was then gradually increased while the pressure was kept constant at the value of P,. The
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Fig. 7. Responses for two loading paths.
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prescribed bending induced a growth of ovalization of the tube cross section as shown in
Figs 7(b) (ii) and (iv). The rate of growth of ovalization was accelerated by the presence
of the pressure. Eventually a limit moment was reached (Fig. 7(b) (iit)). Because of the
accelerated growth of ovalization the limit moment (M) and the corresponding limit
curvature (x,) were smaller than the critical values at lower pressures. For "higher” values
of pressure, collapse followed immediately the attainment of the limit moment. For “lower”
values of pressure, bending beyond the limit moment was possible. Such loading led to
localized growth of ovalization and eventually to catastrophic collapse.

Figure 9(a) shows a set of measured moment—curvature responses for different values
of pressure. Figure 9(b) shows a set of collapsed test specimens. The extent of damage
sustained by a test specimen during collapse depends on the value of pressure and the
compliance of the pressure vessel.

PROBLEM FORMULATION

The response and collapse, of the tubes of interest, under combined bending and
pressure loads were evaluated numerically through a procedure based on the principle of
virtual work. A solution procedure, originally developed for pure bending loading{i1, 29}
was extended to include hydrostatic pressure loading.

Kinematics

The problem considered consists of a long, circular, thin-walled tube of mean radius
R and wall thickness ¢ (Fig. 10). The tube is in a state of pure bending and external pressure.
The tube curvature, &, and the deformation of its cross section are assumed to be uniform
along the tube length. In addition, symmetry about the plane of bending is assumed.

The kinematic relations adopted{10, 30) accommodate relatively large deflections of
the tube cross section. The coordinate system used and the displacement components are
defined in Fig. 10, It is assumed that plane sections perpendicular to the tube mid-surface
and those perpendicular to the tube wall mid-surface remain plane during loading. The
strains are assumed to remain small but finite rotations of the plane sections are accom-
modated.

The circumferential strain can be expressed as

£y = 83’*‘:’(;; (1)

where the membrane component & is given by

o (UAw) L(vHwY 1wy
&u*( R~)+§( R +2 R @t

and the local curvature x, is given by

o= (ENC-(5))

The axial strain can be expressed as

g = &g +{K 4)

where £ is the axial strain of the axis of the cylinder and

()Y =d()/do.
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Fig. 10. Problem geometry.

{ = [(R+w) cos 0—v sin 0+ cos 0] (3
(Fig. 10).

Constitutive behavior

The tube geometrics considered, and the particular interest in establishing the sensitivity
of the collapse loads to the loading path, dictated that incremental plasticity be used to
model the material. The simplifying assumptions of the J,-type of incremental plasticity
are adopted. The customary assumptions of the classical plasticity theory of smooth, convex
yield surfaces are adhered to. The strain increment is assumed to be given by

de;; = def,+def,. (6)

The elastic part of eqn (6) is assumed to be isotropic and is related to the stress increments
through

1
def, = E[(l +v) do;;—v doy, 9] N

Hill's extension of the J.-type plasticity to anisotropic yiclding{31] was used to model the
type of anisotropic yielding observed in the tubes used[28]. The stress component normal
to the tube wall is assumed negligible and all shear stress components are zero. Thus the
equivalent stress is taken as

, | I A
6. =|06;— l+—S—05—§’5 o-,,a,,+§0§ao %)

where

Gog Cor

Gox Oox
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and o,.. 4. 0y, are the initial yield stresses in the principal directions of anisotropy. For
the majority of the measurements S, and S, were found to differ only slightly. Thus, unless
otherwise stated. the following simplification is adopted :

S,=S5,=8. )
The value of S was obtained from biaxial experiments as described in Ref. {28]. The

material stress—strain curves measured experimentally were represented with the three
parameter Ramberg-Osgood fit given by

o 3(fo\!
8=E|:l+:,<a—y> ] (10)

The initial yield surface was assumed to be given by
G, = Oy,. (1
Subsequent yield surfaces were determined by the flow and hardening rules used. If the

yield surface is assumed to grow such that the initial nature of the anisotropy is retained[31]
(corresponds to isotropic hardening), then the yield function is defined by

J(0) = 0 (12)

where o, .. represents the largest value of o, in the loading history.
The plastic strain increment is given by

1 af of
P__ Y 2
de;, H 3o do,. 36, (13)
For a uniaxial test in the x-direction eqn (13) reduces to
do,
H= o (14)

This type of model is known to be inappropriate for loading histories which involve
reloading preceded by substantial unloading, or involving reverse loading. For some loading
histories the problem considered can experience unloading and reloading ; thus, the non-
linear, kinematic hardening model suggested by Drucker and Palgen[32] was also adopted
as an alternative for the analysis. In this case the yield surface retains its initial size but
translates in stress space. Subsequent yield surfaces are defined by

R ‘ , 12
f(o) = [(ax—ax)-—«a,—a,) (G =)+ g—z(oo—ae)-] = oo (1s)

where a represents the position of the center of the yield surface in stress space. The model
is completed by specifying the direction of translation of the yield surface. The first option
used is the onc suggested by Ziegler[33] and adopted in Ref. [32]. In this case the yield
surface translates in the direction defined by the line joining the current center of the yield
surface to the stress point, i.c.

da,; = du(o;; — ;) (16)
where the scalar dyu is evaluated from the consistency condition.

The second option used was proposed in Ref. [11]. [t is based on experimental obser-
vations made by Phillips and co-workers as summarized in Ref. [34]. A second surface,
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given the name the loading surface, representing the maximum state of stress in history was
incorporated into the Drucker-Palgen model. This surface is given by

F(d) = Oemax (17)

it grows in an isotropic fashion whenever the yield surface comes into contact with it. The
yield surface is always contained by the loading surface. The two surfaces come into contact
tangentially. When the two surfaces are not in contact the yield surface translates in the
direction defined by PQ in Fig. 11 (Mroz[35]). This rule ensures that the two surfaces come
into contact tangentially.

Principle of virtual work
The principle of virtual work (PVW) is used to satisfy equilibrium. Expressed in terms
of the problem variables it can be stated as follows:

2RJ~ J (006, +6,06,) d= dO
0 J-12

. b4 | ) )
= PRI [5li‘+ 2R (2WIW + 2600 + WoU" + 0'0w — 6ou — bi"()l‘)] do (18)

0

where ¢ = 046, P = P+ P, d, = o +6., etc. and (') denotes an increment in ( ). The left-
hand side of eqn (18) can be recognized as the increment of work done by the internal
stresses and the right-hand side as the increment of external work done by the external
pressure. A more detailed form of eqn (18) is given in the Appendix.

The displaccment components ¢ and w are approximated by

N N
v=RY b,sinn0, w=x Rl:a(,+ Y a, cos n()]. (19)

ne2 nw |

Equations (19) are substituted in eqns (l)-(5) and those are in turn substituted
in eqn (18) as demonstrated in the Appendix. By noting the arbitrariness of

da=du(F- o)

“\\ Loading
Surface

Fig. 11. Two surface hardening rule.
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{0dy. 0d,. ..., 00y, 0B, b1, ..., 06y, 662} a system of 2N+ 1 non-linear algebraic equations
in terms of {dg.d,,...,dy, b2, b;....,by, €2} are obtained. This system of equations is solved
using the Newton-Raphson method. The iterative scheme contains nested iterations for the
constitutive relations.

The integrations in eqn (18) are carried out numerically using Gaussian quadrature.
Seven integration points through the thickness and 12 in the interval [0, 7] were found to
be sufficient through convergence studies{36].

As mentioned earlier bending is controlled by specifying curvature increments «.
Pressure loading is achieved by prescribing either pressure increments, P or by prescribing
increments of the displacement coefficient @, (main contributor to ovality). The dis-
placement controlled approach is required in order to properly identify limit pressures. The
values of the loading increments were chosen such that the resultant stress increments did
not exceed 2000 psi and the resultant ovality increments (AD/D) did not exceed 0.002.

Following a converged solution the values of displacements, strains and stresses are
updated and the bending moment evaluated from

M= ZRJ‘ J .l dz d. (20)
[ -t 3

RESULTS AND DISCUSSIONS

Comparison of experimental and predicted results

The numerical solution procedure described in the previous section was used to simulate
the experiments carried out. The main characteristics of the predicted responses for the x —
P loading path are summarized in a set of results for Dyft = 24.5 presented in Fig. 12,

1z X )
o1 \-/,' Ao
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N m
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L] 00 oDv U0F 008 O o
8 £
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—_— PP,
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Fig. 12. Calculated responses for the x — P loading path: (a) moment—curvature response; (b)
ovalization-curvature response; (c) pressure-ovalization responses; (d) moment-pressure
responses.
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Predicted results for the P — k path are presented in Fig. 13. The geometric and material
parameters used in these predictions are listed in Table 1. The results are normalized by
the following quantities :

ZUQSI

P, = ,
0 D,

M, = aoD3t, &, = t/D3. @

As in the experiments, in the x — P loading path the tube was incrementally loaded to
the chosen value of curvature at zero pressure. Calculated moment-curvature and oval-
ization—curvature responses for this part of the path are shown in Figs 12(a) and (b),
respectively. The curvature was then fixed (at the four values indicated by dotted lines in
the figures) and the pressure incremented. The ovalization developed during the bending
part of the path grew further as shown in Fig. 12(c). Eventually a limit pressure was reached.
This limit pressure represents the collapse pressure.

During the pressurization process the bending moment drops as shown in Fig. 12(d).
This causes material unloading at some points on the cross section, followed by reloading.

The pure bending part of the loading path is curvature controlled and. as a result, the
tube does not collapse on the attainment of the limit moment. From experimental obser-
vations the ovalization of the tube cross section ceases to be uniform along the length
beyond the limit moment. Deformation localizes to a section a few diameters long. This
type of deformation cannot be simulated by the analysis described. As a result, the responses
predicted beyond the limit moments are in general unconservative.

In the P — « loading path pressure was applied first. The pressure-ovalization response
for this part of the history is shown in Fig. 13(a). The pressure was then fixed (at the
values indicated by dotted lincs) and the curvature incremented. The moment-curvature,
ovalization-moment and ovalization-curvature responses obtained at four different valucs
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Fig. 13. Calculated responses for the P — x loading path: (a) pressure-ovalization response;
(b) moment-curvature responses; (c) ovalization-moment responses; (d) ovalization—curvature
fesponses.
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of prescribed pressure are shown in Figs 13(b)—(d). respectively. For “lower™ values of
pressure, the moment—curvature response exhibits a limit moment before collapse. Attain-
ment of the limit moment will be taken as the critical state. The localized deformation which
follows the limit moment cannot be simulated by this analysis. As was the case in the
experiments, collapse is more clearly identified at “higher™ pressures. The critical curvature
is identified by a sharp decay in the bending moment with a small increase of curvature.
The corresponding ovalization increases sharply to a value at which the external pressure
can no longer be supported.

The experimental and predicted values for collapse in the k — P loading path for the
two D/t values considered are shown in Fig. 14. The point on the abscissa represents the
curvature at which the limit load occurred under pure bending. The results exhibit a
rapid decrease in collapse pressure with increasing curvature up to the value of curvature
corresponding to the limit moment. For tubes bent beyond the limit moment. the collapse
pressure seems to asymptotically approach a value close to the propagation pressure of the
pipe[36]. It is interesting to note that the envelopes do not close in the range of curvatures
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Fig. 14. (a) Comparison of cxperimental and predicted collapse envelopes for kv — P path
(Do/t = 34.7). (b) Comparison of experimental and predicted collapse envelopes for & — P path
(D)1 = 24.5).
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considered. This is due to the fact that limitations in the testing facility did not allow
bending. inside the pressure vessel, up to the point of complete collapse of the tube (e.g.
moment capacity reduced to less than 50% of limit moment).

Scatter in the experimental results is due to variations in both geometric and material
parameters among the test specimens (i.e. variations not picked up by the normalization
used ; e.g. variations in initial imperfections, anisotropy, etc.). Predictions based on the
mean material and geometric parameters of each D/t group are also included in the same
plots. Predictions from the three constitutive models described in the previous chapter are
included. The same material constants were used in all models. The results from the two-
surface hardening rule yield the best overall comparison with the experiments. Isotropic
hardening leads to slightly higher results than the two surface kinematic hardening rule and
an overestimate of the collapse pressure at higher values of curvature. The results from the
kinematic hardening rule with the Ziegler hardening direction substantially underestimate
the experimental results.

The main cause for the relative failure of the last model is illustrated in Fig. 15 in which
the ovalization predicted by the three models in a pure bending test is compared with
experimental values. The Ziegler hardening rule leads to substantially higher predictions
for ovalization compared to the other two models which are found to lead to reasonably
good agreement with the measured values. Higher ovalization during the bending phase of
the loading history results in lower collapse pressures. The main difference between the two
kinematic hardening models used is the direction of translation of the yield surface. Sensitivity
of predicted stress-strain relationships to the direction of translation of the yield surface
were also observed in Refs [11. 37, 38]. These references also showed that the Ziegler
hardening direction can lead to unrealistic results.

The pure bending part of the loading path involves no unloading. As a result, the two
surface models and the isotropic hardening model yield the same results as demonstrated,
for example, in Fig. 5. However, during the pressurization phase of the loading history
unloading from and reloading back to a plastic state occurs in some parts of the tube
cross section. Figure 16 shows the stress history predicted at a point in the cross section by
the two models. The loading history involved pure bending to v/x = 0.618 followed by
pressurization until collapse. The initial yield surfaces and loading surfaces and the ones at
the end of the bending phase are shown. During pressurization unloading occurred and
was followed by reloading. For isotropic hardening, plastic reloading was recommended at
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Fig. 15. Measured and predicted ovalizations as a function of curvature (pure bending test).
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Fig. 16. Stress histories at point A predicted by two constitutive models.

PPy, = 0.312 where as for the two surface rule it was recommended at P/P, = 0.280. The
collapse predicted by the two models occurred at P/P, = 0.316 and 0.295, respectively.

Isotropic growth leads to an unrealistically large yield surface at the end of the bending
phase as shown in Fig. 16(a). This causes delay in the plastic reloading as compared to the
two surface hardening rule shown in Fig. 16(b) (indicated by the much larger arc traversed
in the elastic range).

The type of behavior described above was characteristic of at least 25% of the inte-
gration points. As a result, higher collapse pressures were predicted by isotropic hardening
(see Ref. [36] for more details).

Experimental and predicted values for collapse in the P — k loading path are shown
in Fig. 17. In this case two sets of points are shown. Squares represent the curvatures at
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Fig. 17. (a) Comparison of experimental and predicted collupse envelopes for P — x path
(Dy/t = 34.7). (b) Comparison of experimental and predicted collapse envelopes for P — x path
(Doft = 24.5).

which the limit moment was reached; the triangles represent the values at which the
tube collapsed catastrophically. At *higher™ values of pressure the two failure events are
indistinguishable as shown in Fig. 9(a). At “lower™ values of pressure the two occurred at
increasingly different values. As already mentioned, bending beyond the limit moment was
observed to lead to localized deformations. It is again suggested that for design purposes,
the curvature at the limit moment should be considered to be the maximum allowable load
for the structure.

Predictions of the failure envelopes based on the limit moments are also included in
Fig. 17. In this case, the loading history does not involve serious unioading or reloading.
As a result the predictions from isotropic hardening and the two surface hardening rule are
essentially the same. Good agreement between these predictions and the experimental
results is observed for D/t = 34.7. Reasonable agreement is observed for Do/t = 24.5. In
both cases, the kinematic hardening model which incorporates the Ziegler hardening direc-
tion, again yields predictions which are substantially lower than the experiments.

The results for the two loading paths and predictions from the two surface hardening
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rule model are compared in Fig. 18 for D,/t = 34.7 and Fig. 19 for Dy/t = 24.5. The effect
of the loading history on catastrophic collapse is clearly demonstrated. [n comparing the
results for the two loading paths: it is important to remember that the two sets of results
were obtained from different, but realistic, failure criteria (x — P results represent actual
collapse where P — « results represent the attainment of a limit moment). However, it is
also observed that the P — x collapse envelope based on collapse is still substantially lower
than the x — P envelope. We reiterate that the collapse criteria adopted are the ones
considered most suitable for ultimate load design purposes. The main characteristics of the
two envelopes seem to be common to both D/t values shown.

The primary cause of the lower collapse envelopes for the P — x loading history can
be attributed to the more severe plastic state induced in the areas of 8 = 0, /2, m and 3x/2
during loading. This enables an earlier onset of the collapse mechanism which is essentially
an n = 2 collapse mode.

Results for the third loading path considered which has an approximately radial
direction centered at the origin of the P - x plane, are shown in Fig. 20. Points at which
the limit moment, as well as the actual collapse, occurred are identified for both the
experiments as well as the predictions (note that predictions beyond the limit loads are
unconservative since localization of deformation is neglected in the analysis). Reasonable
agreement between the experimental and predicted limit load cases is observed. It is inter-
esting to observe that the radial path yields critical values which are even lower than the P —
x path. (Note that in the analysis the path followed was radial whereas in the experiments it
was stepwise radial as shown in Fig. 5(c).)

An unusual mode of ovalization

As reported above, bending induces ovalization of the tube cross section. The minor
axis of the oval-shaped cross section is usually in the plane of bending. External pressure
enhances the growth of the ovalization and leads to the eventual collapse of the tube. The
typical mode of collapse obtained in the experiments was as shown in Fig. 8(c); i.c. the
tubes collapsed in a plane perpendicular to the plane of bending. In the case of a group of
tubes bent to refatively small values of curvature, a different mode of collupse was obtained
shown in Fig. 21(b). These tubes collapsed in the plane of bending.

Collapsc results, for the k — P loading path, obtained from tubes which exhibited this
behavior are shown in Fig. 21(a). The mode of collapse is identificd by the line drawn
through the experimental points. The unusual behavior occurred for bending curvatures,
r/x, < 0.3, In this regime, the collupse pressure measured under increasing prescribed
values of curvature, first decreased, then increased and then continued to decrease in the
general fashion reported earlier. This behavior was found to be repeatable in a second
group of experiments carried out in this curvature regime[39].

Caretul measurement of the deformation of the tube cross section in the bending phase
of the loading, revealed that, in the curvature regime in question, the tubes exhibited reverse
ovalization, i.c. the major axis of the deformed cross section was in the plane of bending[39].
For higher values of bending curvature the induced ovalization returned to the normal
type.

Careful consideration of all the problem parameters revealed that bending-induced
reverse ovalization, similar to that observed in the experiments, can be caused by the
presence of a circumferentially uniform, bending type residual stress. The sense of the
residual bending stress required is such that if the tube is cut along a generator it would
spring open (Fig. 21(a)). The range of curvature in which reverse ovalization is exhibited
and its amplitude depend on the strength of the residual stress field (i.e. a4/6,). Experiments
carried out on the tubes used in the collapse tests verified that the major component of the
residual stress ficld was of this type.

Figure 21(a) shows analytical predictions of the kx — P collapse envelope including a
residual stress field of the type described of strength o4/o, = 0.35. At low values of curvature
the collapse envelope exhibits two cusps. The predicted collapse mode for curvature values
between the two cusps was found to be of the unusual type. The agreement between the
experimental and predicted results is good for all values of curvatures.
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Fig. 22. Predicted collapse envelopes for three different D/t values.

Results predicted without including residual stresses are also.included for comparison
purposes.

Parametric study

The suitability of the problem formulation and the solution procedure used in pre-
dicting the limit load type of instabilities, which characterize the problem in the low D/t
range, has been demonstrated. In this section, the numerical solution procedure was used
to examine the dependence of the collapse envelopes on various problem parameters.
Collapsc envelopes for the k = P and P — x loading paths were generated for each par-
ameter varicd. The collapse criteria adopted are the same as those identified in the previous
section,

Figure 22 shows the predicted collapse envelopes for D/t values of 32, 24 and 16. The
main characteristics of the three envelopes remain the same. As expected, tubes with lower
D/t values can sustain higher combinations of pressure and curvature.

The effect of small initial geometric imperfections on the collapse envelopes is examined
in Fig. 23. The geometry of the imperfection used was as follows:

wy(0) = — RA, cos 20. (22)
101 Q,'= 240
p,% E=28x 10%ksi
° ay2 42 ksi
0.84 n=13

) 02 04 06 08 1o 12 14 1.6 1.8 20

Fig. 23. Predicted collapse envelopes for tubes with initial imperfections.
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Collapse under pure pressure is very sensitive to imperfections as reported in Ref. [21] and
elsewhere. The curvature corresponding to the limit moment is relatively insensitive to such
imperfections. As a result, the predicted load combinations at failure are lower in the
presence of imperfections for low curvatures. At higher curvatures the effect of this type of
imperfection is less pronounced.

Figurc 24 shows how the collapse envelopes vary with the material yield parameter ..
It is important to note that in each case shown the normalizing pressure P, was adjusted
to reflect the change in o,. Thus, the seemingly higher predicted collapse pressures shown
in the figure for lower yicld stresses are due to the normalization used. If the tube has a
collapse pressure which is influenced by inclastic effects, then an increase in the yield stress
will cause an increase in the collapse pressure. [t is interesting to observe that in the pure
bending case the curvature corresponding to the limit moment does not vary in the range
of yicld stresses considered.

Figure 25 shows the variation of the collapse envelopes with the material anisotropy
parameter S. The material exhibits isotropic yielding if S = 1. When S < | the yicld stress
in the circumferential direction is lower than that in the axial direction. The normalizing
pressure P, reflects changes in §; thus, again, the effect of anisotropy on the collupse
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-—P -
06
041
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o 02 04 06 08 10 12 14 16 18 20

Fig. 25. Effect of yield anisotropy on predicied collapse envelopes.



532 E. Corona and S. KYRIAKIDES

P
(p?)
| k DT' = 24.0
3000\‘;\, £ = 28x10°ksi
KN ay = 42 ksi
\\\ """ x—P
1 ‘ — P —«
2000
1000
) 02 04 06 08 1o 12 4 16 I8 20

— s,

Fig. 26. Effect of material hardening purameter on predicted collapse envelopes.

pressure (vertical axis) is normalized out. However, it can be stated that anisotropy in
which § < 1 leads to lower collapse loads.

Figure 26 shows how the material hardening parameter n affects the collapse envelopes.
It is obscrved that the hardening parameter has a very small effect on the collapse envelope
for the k — P loading path but a much bigger effect on the P — x envelope. The seemingly
unusual results at tow values of curvature, are due to the shape of the Ramberg-Osgood
stress-strain fit at low strain values.

SUMMARY AND CONCLUSIONS

The response and stability of long, relatively thick-walled steel tubes was studied
through a combined experimental und numerical program. Stainless steel 304 tubes with
D/t values of 34.7 and 24.5 were loaded to collapse. Pressure-curvature collapse envelopes
were generated for loading paths involving bending followed by pressurization, and pres-
surization followed by bending. A limited number of experiments involving a radial loading
path were also carried out. The material properties of the test specimen were measured in
separate experiments. The material and geometric properties of the tubes tested were such
that significant plastic deformations were induced by the loading applied.

The responses of the tubes were found to be characterized by limit load type of
instabilitics for all loading paths examined. Under pure pressure loading, the tubes tested
catastrophically collapsed on attaining a limit pressure (loading essentially pressure con-
trolled). Under pure bending loading the tubes were found to attain a limit moment. Due
to the curvature controlled loading used, bending could be continued beyond the limit
moment. Following the limit load, the tube deformation (ovalization of cross-section)
localized to a region a few diameters long. Continued bending led to a precipitous drop in
bending capacity.

When bending and pressure were applied simultancously, the collapse pressure, the
maximum bending moment capacity and the corresponding curvature were reduced due to
the interaction of geometric and material nonlinearities. Geometrically, the two loads
intcract through the tube ovalization. The material interaction occurs through inelastic
effects. Since the latter are path dependent, both the response as well as the instabilities of
the tubes were found to depend on the loading path.

In the © — P loading path the collapse was due to a limit load type of instability in the



On the collapse of inelastic tubes under combined bending and pressure 533

pressure response. In the small curvature range the collapse pressure dropped relatively
quickly with increasing bending curvature. For larger curvatures the collapse pressure seems
to asymptotically approach the propagation pressure of the pipe.

In the P — « loading path two types of instabilities were observed. A limit moment in
the response and catastrophic collapse. At higher pressures the two were indistinguishable.
At lower pressures a limit moment was reached first followed by localization in the tube
ovalization which eventually led to catastrophic collapse of the tube.

The results from the radial path were similar to those of the P — « path.

Attainment of a limit load was chosen as the instability criterion most appropriate for
the problem in the low Dy/r range studied. A formulation of the problem in which all
variables remain constant along the tube length was used to predict the tube response and
limit load type of instability. The J, incremental theory of plasticity. with three different
hardening rules. was used to model the material inelastic behavior. The predictions were
found to be sensitive to the hardening rule used. A two surface hardening rule developed
was found to vield the best agreement with experiments. Isotropic hardening tended to
overestimate the collapse pressures in the large curvature range for the k — P loading path.
Ziegler type kinematic hardening was found to lead to unrealistically low predictions of the
collapse loads.

In general the experimental results can be numerically reproduced provided the geo-
metric and material parameters of the problem arc carefully measured. These must include
mean values of the tubc initial ovalization. the material stress -strain behavior, anisotropic
yielding and circumferential residual stresses.
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APPENDIX

The set of 2N+ 1 non-lincar algebraic equations used to find the solution can be derived as follows: from

the kKinematic relations (1) (5) we obtain

8, = 3E¥ + K(Sw cos 0 =3¢ sin 0) (AD)
36, = 8¢y + 20K, (A2)
!
86y = R [(R+ 6" +w) (36 + 0) + (£ — W) (3¢ — )] (A3)
I RN (58 — ) + (= i) (6 — i) 36 —du’
Y Vi YWY (=) | — o
. l R O —ow") + (1 (i rE
Ok, = - . (A4)

(5T

Substituting eqns (19) into the above equations

N N
0¢, = SiY + (RK cos )dd,+ Y (RR cos nl) cos dd, — Y (RK sin nl sin 0)db, (AS)
netl A2

l N

8E) = r {(R+t"+ W)Sdy+(R+6"+4) Y d, cos nt)
ne |
v ~ . v .
+(F—w) Z Sa,n sin nfl+ (R+¢"+ W) z 3b.n cos nl + (¢ —w') Z db, sin nl)} (A6)
ne | LRI ne=l
N hl .

Z Sa,n cos nt) + Z dh,n cos ni)

(SK',, = =l LM

)

¥ v
(& =W (f=w) ¥ b sin nf+ (5= W) (£ =w") Y 6, sin nd
nw| L

+ : . (AT

[ -(Z)]
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Substituting eqns (AS)}-(A7) in the principle of virtual work and observing the arbitrariness of 5d,, 44,, 68,, and
d£2, the following system of non-linear algebraic equations is obtained

fo= RL f [&‘(R;& cos 9)+0—1;(R+ﬁ’+»i')]d:d0+PR’1z(du+l) =0

f,=R ( f d [RK cos n8 cos 0]+ (—:{ (R+6" +w) cos nf + (¢ —w")n sin nf
JO J-v2

n* cos nd (&' —¥") (¢ —¥")n sin nf

+3 \/( (f- .;-')1) * [ (z’-—u’")’]’ : d- d0+ PR *n(d, +nb,) =0
R 1-{ == R 1-
R R

f= RJ J " 16,0~ R sin (n~N)0 sin 0]
(1] -2

+%’ (R+0"+) (n~N) cos (n—=N)G+ (¢ —w’) sin (n—N)0

(_r:N) C(ls_("__ N)O (& =w") (B —w') sin (n— V)0

[G) AT e

PR (B, v+ (=N, y) =0

F-IR1

for N+2<n

A
l:)
z

w {1l
Sivor = RI J ¢, dzdo =0, (AR)
0 J-ul



